Extensions 1→N→G→Q→1 with N=C2 and Q=C23×C8

Direct product G=N×Q with N=C2 and Q=C23×C8
dρLabelID
C24×C8128C2^4xC8128,2301


Non-split extensions G=N.Q with N=C2 and Q=C23×C8
extensionφ:Q→Aut NdρLabelID
C2.1(C23×C8) = C22×C22⋊C8central stem extension (φ=1)64C2.1(C2^3xC8)128,1608
C2.2(C23×C8) = C22×C4⋊C8central stem extension (φ=1)128C2.2(C2^3xC8)128,1634
C2.3(C23×C8) = C2×C42.12C4central stem extension (φ=1)64C2.3(C2^3xC8)128,1649
C2.4(C23×C8) = D4×C2×C8central stem extension (φ=1)64C2.4(C2^3xC8)128,1658
C2.5(C23×C8) = Q8×C2×C8central stem extension (φ=1)128C2.5(C2^3xC8)128,1690
C2.6(C23×C8) = C8×C4○D4central stem extension (φ=1)64C2.6(C2^3xC8)128,1696
C2.7(C23×C8) = C42.691C23central stem extension (φ=1)32C2.7(C2^3xC8)128,1704
C2.8(C23×C8) = C42.695C23central stem extension (φ=1)64C2.8(C2^3xC8)128,1714
C2.9(C23×C8) = C42.697C23central stem extension (φ=1)64C2.9(C2^3xC8)128,1720
C2.10(C23×C8) = C22×M5(2)central stem extension (φ=1)64C2.10(C2^3xC8)128,2137
C2.11(C23×C8) = C2×D4○C16central stem extension (φ=1)64C2.11(C2^3xC8)128,2138
C2.12(C23×C8) = Q8○M5(2)central stem extension (φ=1)324C2.12(C2^3xC8)128,2139

׿
×
𝔽